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 Background: This paper presents parametric modelling of flexible plate structures 

using ant colony optimization (ACO). The global optimization technique of ACO is 

utilized to obtain a dynamic model of a flexible plate structure based on one-step-ahead 

(OSA) prediction.  Objective: The structure is subjected to three different disturbance 

signal types, namely random, pseudo random binary sequence (PRBS), and finite 

duration step. The fitness function for the ACO optimization is the mean-squared error 
(MSE) between the measured and estimated outputs of the plate.  Results: The 

validation of the algorithm is presented in both time and frequency domains. The 

developed ACO modelling approach will be used for active vibration control systems 
design and development in future work.  Conclusion The performance of ACO2 has 

been shown to outperform ACO1 in minimizing the prediction error, resulting in a 

good level of accuracy of the estimated model.   
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INTRODUCTION 

 

 System identification deals with the problem of building mathematical models of dynamical systems based 

on observed data from the system in either the time or frequency domain. Modeling and identification 

techniques help develop knowledge about a system. They are prerequisites to many practices in engineering and 

technology and are especially important in the field of automatic control. Estimation of the parameter values 

involves uncertainties that are due to limitations of the mathematical models used to represent the behaviour of 

the real structure, the presence of measurement error in the data, and insufficient excitation and response 

bandwidth. In model-based control systems design a good model should capture the most important dynamic 

behaviour of the process in realistic conditions while remaining as simple as possible (Alasty, A., R. Shabani, 

2006; Papadimitriou, C., 2004; Sanchez, J.M.M., 1996; Vasquez, J.R.R., 2008).  

 Ant colony optimization (ACO) is a meta-heuristic inspired by a foraging behaviour of ants that has been 

effectively applied to tackle hard combinatorial optimization problems. The fundamental component of ACO is 

a solution structured mechanism, which simulates the decision making processes of ant colonies as they seek for 

food whereby finally find the most competent route from their nests to food sources. ACO is a probabilistic 

search approach that is based on inspiration of evolutionary process for the search of resolutions to the various 

types of optimization problems in continuous domain. The adaptation of the ant colony algorithm to the 

handling of continuous domain is done by substituting the discrete probability distribution with a continuous 

one without any major conceptual changes to its construction. Based on the objective values in continuous 

domain, achieving the global optimal solution can be more abruptly and refined search attempts within 

expectant regions by self-adjusting the path searching behaviours of the ant. Within the past decade, ACO has 

attracted and inspired scholar attentions to endeavour improvement and amendment of ACO algorithms. 

 Motivated by the aforementioned studies, this paper aims to present a method for system identification for 

flexible plate structures. In the present work, ACO optimization is used to minimize the prediction error of the 

actual plant output and the model output. The proposed approach uses the random search capability of ACO to 

directly update the required parameters of the model based on one-step-ahead (OSA) prediction. 
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Flexible Plate Structure: 

 Flexible structure systems are known to demonstrate an intrinsic property of vibration when subjected to 

disturbance forces, leading to component and structural damage. Study of the natural modes, frequencies and 

the dynamic behavior of flexible plates have received considerable attention due to the range of applications, 

including bridge decks, solar panels, and electronic circuit board design. There is a growing need for developing 

suitable modeling and control strategies for such systems due to the highly non-linear dynamics of such 

systems. It is crucial to obtain an accurate model of a plate structure in order to control the vibration of the plate 

efficiently. 

 Dynamic modeling and simulation of a flexible plate structure using the finite difference (FD) method have 

been reported in Darus & Tokhi (2002), where a flat, square plate with all edges clamped has been considered. 

The classical dynamic equation of a thin rectangular plate is developed using partial differential equation (PDE) 

derived from Leissa (1969) and Timoshenko & -Krieger (1959). 
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where w  is the lateral deflection in the z  direction, r is the mass density per unit area, q = q(x, y) is the 

transverse external force at point (x, y) and has dimensions of force per unit area, 
22 tw   is the acceleration 

in the z direction,  )1(123 vEhD   is the flexural rigidity with v representing the Poisson ratio, h the thickness 

of the plate, and E the Young’s modulus. The details of flexible plate equation can be referred to Julai and 

Tokhi (2010).  

 

Ant Colony Optimization: 

 The basic ACO algorithm actually fits a discrete problem only and is not suitable for solving continuous 

optimization problems such as linear or non-linear programming. Applying this algorithm to continuous 

domains was not straightforward where the main issue is how to model a continuous nest neighbourhood with a 

discrete structure. As the design problem can always be formulated as optimization problem in continuous 

design space, the ACO algorithm applied in any field should be modified accordingly (Chen, L., 2003; Socha, 

K., M. Dorigo, 2008). 

 The first step in ACO is to initialize all the pheromone. ACO has a common framework which consists of 

Solution Construction Operator, Pheromone Update Operator and Daemon Action.  

 

Solution construction operator: 

 The solution construction operator is performed by each ant to construct its routing path (i.e., a solution of 

the problem) based on the pheromone and heuristic information available. More precisely, the routing path of 

each ant is constructed edge by edge until the routing path is completely established. The probability of 

selecting edge eij, i.e., the probability of an ant at subsolution i selecting j as the next subsolution (i.e., 

subsolution i + 1), is defined as 
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where N
i
k denotes the set of candidate subsolutions (i.e., subsolutions that can be selected by ant k at subsolution 

i); τij and ηij denote, respectively, the pheromone value and the heuristic value  associated with eij. 

 

Pheromone update operator: 

 The pheromone update will update the pheromone values that are associated with the search experience of 

ACO. On the other hand, the pheromone evaporation is used to avoid rapid convergence to a local region 

(Billings, S.A., 1994). The pheromone update operator employed for updating the pheromone value of each 

edge eij is defined as 

ijijij
tnt   )()(

          (3)
 

where ρ is a coefficient such that (1 – ρ ) represents the evaporation trail between t and t + n, τij  is 
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where 
k

ij

   is the quantity per unit of length of trail substance (pheromone in real ants) laid on edge (i, j) by 

the k
th

 ant between time t and t + 1, and it is given by 
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where Q is a constant and Lk is the tour length of the k
th

 ant. The coefficient ρ must be set to a value 0 < ρ < 1 to 

avoid unlimited accumulation of trail.  

 

Daemon Actions: 

 This is an optional component which is used to implement centralized actions that cannot be implemented 

by a single ant, such as local search, and pheromone re-initialization. 

 

ACO1: 

 The development of ACO1 has been presented in (Quan, H., H. Chao,  2007; Wang, L., Q. Wu, 2001). This 

algorithm is referred to as ACO1 throughout this work. Here, the optimization problem is solved by a 

cooperation of artificial ant colony by exchanging information via pheromone deposited on graph edges. The 

essence of ACO1 is composed of two parts: 

1. A state transition rule used by an ant to determine the next destination of a complete tour, and 

2. A pheromone updating rule in allocating a greater amount of pheromone to shorten the tour. 

 Let the vector X = [x1, x2, ..., xn] be the parameters to be optimized, where n represents the total number of 

parameters in the AVC system, along with upper and lower bounds to be xi∈D(xi) = [x, xi_up] with i = 1,2, ..., n. 

The definition field D(xi) is divided into M subspaces, and the middle of each subspace defines a node. A single 

artificial ant k (k = 1, 2, ..., Nant) where Nant is the maximum number of ants, would choose to move from one 

node to the other, in the total of P nodes in each D(xi). The length of each sub-space hi can be expressed by 
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ACO2: 

 In ACO2, the eqn (6) is used and m ants are dispatched initially with i = 1,2, ..., n. Based on the amount of 

pheromone in the regions, the ants choose which region to explore using eqn (7). At first, S grids  are created in 

the search space randomly. Lower (Lo) and upper (Up) bound is set to be [-1,1]. The initialization of the 

feasible solution by ant is using eqn (8). The procedure is followed by the repetition of the main loop until a 

termination condition is met, which may be a given number of solution constructions or a limit on the available 

computation time.  

 
 )rand() (Nant tour 1           (7)
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 Additionally, these solutions may be improved using RWS which stands for the roulette wheel selection. 

Here the RWS is based on the pheromone value of the regions. A user-defined probability q0 is used to decide 

whether to select the region with the highest pheromone or the region selected by the RWS method. The 

probability of the ant choosing region j is given by 
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where SR is the set of regions, τj is the pheromone value in region j, q is a uniform random number in [0,1]. The 

selected pheromone value using RWS will be used in eqn (10) as follows: 

 

NantRWSiLoiUpiLoisolutionbest /)]()([)()(_        (10) 

 

 Then, the best solution will be compared with the previous solution and if satisfied, the new best solution 

found is determined.  

 

Parametric System Identification: 

 Parameter estimation constitutes a procedure that makes it possible to adjust a model with a specific 

structure. For this purpose, it is necessary to determine the appropriate order and parameters for the model that 

best fits input–output data obtained during the experiment. Consider the system’s input and output at time t 

represented by u(t) and y(t) , respectively. The system input, u(t) , is given to both system to be identified and 
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the model. The difference between the outputs from the system and its model, i.e. y(t) and (t) will then be fed 

into ACO to estimate the unknown parameters for the system model. 

 After the maximum number of iterations has been reached, the estimated parameters will be used to update 

the system model, and then the above process will be repeated. Auto-regressive with exogenous (ARX) input 

structure is chosen to model the system (Ljung, L., T. Glad, 1994). This is expressed as 
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where a(i) , b(j) are denominator and numerator polynomial coefficients, n and m are number of coefficients in 

the denominator and numerator polynomials, y, u, and yˆ are measured output, input, and estimated output, 

respectively. The order of the transfer function depends on n. For optimization formula, the mean-squared error 

(MSE) of the difference between the outputs from the system and its model is used as defined by 
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along with upper and lower bounds on the design variables, 1)(1  ia and 1)(1  ib as in (10), S 

represents the number of input/output samples, y(i) is the measured output and yˆ(i) is the calculated model 

output. 

RESULT AND DISCUSSION 

 

 An aluminium type plate of dimensions 1.0m×1.0m×0.32mm was divided into 20×20 sections with a 

sampling time 0.016 sec.  The specification of the plate are mass density per area, ρ = 2.71×10
3
 kg/m

2
, Young’s 

modulus, E = 7.11×10
10

N/m
2
, Poisson’s ratio, υ = 0.3, moment of inertia, Ι = 5.1924×10

-11
kg.m

2 
and simulation 

time, t = 4 seconds. Tests were carried out with different disturbance signal types, namely random, pseudo 

random binary sequence (PRBS) and finite duration step. The disturbance source, detection point, and 

observation point were arranged at locations (7, 7), (8, 8) and (9, 14). Here the system is characterized with the 

detected signal as input and observed signal as output. The best result for ACO2 obtained with 15 ants in 600 

iterations. 

 Figure 1, 2 and 3 show results of the measured and estimated output obtained with ACO2 algorithm 

subjected to different disturbance signal types. ACO1 was also realized for reasons of comparison of modeling 

in the system.  As shown in figures 2(a), 3(a) and 4 (a), the ACO2 achieved the best MSE levels of 1.148×10
-15

, 

6.641×10
-17

, 1.148×10
-15

 in the 283
rd

 , 521
st
  and 57

th
 iterations, respectively, for modelling using random, PRBS 

and finite duration step signals.  
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Fig. 1: The measured and estimated output with ACO2 subjected to random disturbances. 
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Fig. 2: The measured and estimated output with ACO2 subjected to PRBS disturbances. 
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Fig. 3: The measured and estimated output with ACO2 subjected to finite duration step disturbances. 

 Computational time is one of the important factors to be considered in an optimization process. For 

comparison, at the average time of 120 sec, ACO1 achieved the best MSE levels of 1.951×10
-15

, 1.869×10
-16

, 

9.116×10
-14

 in the 167
th

 , 467
th
 and 297

th
 iterations, respectively, for modelling using random, PRBS and finite 

duration step signals. On the other hand, at the same iteration with ACO1, the value of MSE obtained by ACO2 

is 1.9732×10
-15

, 7.5640×10
-17

 respectively for random and PRBS signals. Thus, the performance of ACO2 has 

improved with the use of RWS in the modeling of the flexible plate. 

 

Conclusions: 

 In this work, the system identification problem has been formulated as an optimization task where ACO2 

has been used to estimate parameters of the flexible plate model so as to minimize the prediction error between 

the measured and estimated outputs at each time step. The vibration modes of the flexible plate structure have 

been detected successfully with the modelling techniques considered in this investigation. OSA prediction 

model has been used to identify the parameters with model validity tests using correlation tests. ACO2 has been 

shown to outperform ACO1 in minimizing the prediction error, resulting in a good level of accuracy of the 

estimated model.  
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